Turning Online Product Reviews to Customer Knowledge: A Semantic-based Sentiment Classification Approach
نویسندگان
چکیده
Many product review websites have been established (e.g., epinion.com, Rateitall.com) for collecting user reviews for a variety of products. In addition, it has also become a common practice for merchants or product manufacturers to setup online forums that allow their customers to provide reviews or express opinions on products they are interested or have purchased. To facilitate merchants, product manufacturers, and customers in exploiting online product reviews for their marketing, product design, or purchasing decision making, classification of the products reviews into positive and negative categories is essential. In this study, we propose a Semantic-based Sentiment Classification (SSC) technique that constructs from a training set of precategorized product reviews a sentiment classification model on the basis of a collection of positive and negative cue features. Furthermore, the proposed SSC technique includes a semantic expansion mechanism that uses WordNet for expanding the given set of positive and negative cue features. On the basis of three product review corpora, our empirical evaluation results suggest that the proposed SSC technique achieves higher classification effectiveness than the traditional syntactic-level sentiment classification technique does. Moreover, the SSC technique with the use of few seed features (e.g., 10 or 20) can result in comparable classification effectiveness to that attained by the use of a comprehensive list of positive and negative cue features (a total of 4206 words) defined in the General Inquirer.
منابع مشابه
A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملMining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews (RESEARCH NOTE)
As the internet and its applications are growing, E-commerce has become one of its rapid applications. Customers of E-commerce were provided with the opportunity to express their opinion about the product on the web as a text in the form of reviews. In the previous studies, mere founding sentiment from reviews was not helpful to get the exact opinion of the review. In this paper, we have used A...
متن کاملMining Feature-Opinion in Online Customer Reviews for Opinion Summarization
Online customer reviews is considered as a significant informative resource which is useful for both potential customers and product manufacturers. In web pages, the reviews are written in natural language and are unstructured-free-texts scheme. The task of manually scanning through large amounts of review one by one is computational burden and is not practically implemented with respect to bus...
متن کاملLatent Customer Needs Elicitation by Use Case Analogical Reasoning From Sentiment Analysis of Online Product Reviews
Different from explicit customer needs that can be identified directly by analyzing raw data from the customers, latent customer needs are often implied in the semantics of use cases underlying customer needs information. Due to difficulties in understanding semantic implications associated with use cases, typical text mining-based methods can hardly identify latent customer needs, as opposite ...
متن کاملSentiment Classification by Semantic Orientation Using SentiWordNet Lexicon from Online Customer Reviews
Sentiment analysis and classification is an area of text classification that began around 2001 and has recently been receiving a lot of attention from researchers. Sentiments about a given subject, be it a commercial product or any other topic of interest can contain a wealth of information not only of the generic opinion toward the subject but also individual opinions of its several features o...
متن کامل